首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3664篇
  免费   5篇
  国内免费   7篇
航空   1658篇
航天技术   1288篇
综合类   181篇
航天   549篇
  2021年   25篇
  2019年   24篇
  2018年   62篇
  2017年   40篇
  2016年   39篇
  2015年   21篇
  2014年   80篇
  2013年   104篇
  2012年   86篇
  2011年   137篇
  2010年   82篇
  2009年   150篇
  2008年   183篇
  2007年   102篇
  2006年   90篇
  2005年   93篇
  2004年   104篇
  2003年   104篇
  2002年   164篇
  2001年   169篇
  2000年   53篇
  1999年   89篇
  1998年   102篇
  1997年   83篇
  1996年   106篇
  1995年   127篇
  1994年   87篇
  1993年   59篇
  1992年   79篇
  1991年   32篇
  1990年   30篇
  1989年   69篇
  1988年   26篇
  1987年   27篇
  1986年   34篇
  1985年   121篇
  1984年   105篇
  1983年   65篇
  1982年   87篇
  1981年   112篇
  1980年   30篇
  1979年   21篇
  1978年   28篇
  1977年   24篇
  1975年   22篇
  1974年   28篇
  1972年   21篇
  1971年   21篇
  1970年   21篇
  1969年   24篇
排序方式: 共有3676条查询结果,搜索用时 281 毫秒
81.
Earth's subsurface offers one of the best possible sites to search for microbial life and the characteristic lithologies that life leaves behind. The subterrain may be equally valuable for astrobiology. Where surface conditions are particularly hostile, like on Mars, the subsurface may offer the only habitat for extant lifeforms and access to recognizable biosignatures. We have identified numerous unequivocally biogenic macroscopic, microscopic, and chemical/geochemical cave biosignatures. However, to be especially useful for astrobiology, we are looking for suites of characteristics. Ideally, "biosignature suites" should be both macroscopically and microscopically detectable, independently verifiable by nonmorphological means, and as independent as possible of specific details of life chemistries--demanding (and sometimes conflicting) criteria. Working in fragile, legally protected environments, we developed noninvasive and minimal impact techniques for life and biosignature detection/characterization analogous to Planetary Protection Protocols. Our difficult field conditions have shared limitations common to extraterrestrial robotic and human missions. Thus, the cave/subsurface astrobiology model addresses the most important goals from both scientific and operational points of view. We present details of cave biosignature suites involving manganese and iron oxides, calcite, and sulfur minerals. Suites include morphological fossils, mineral-coated filaments, living microbial mats and preserved biofabrics, 13C and 34S values consistent with microbial metabolism, genetic data, unusual elemental abundances and ratios, and crystallographic mineral forms.  相似文献   
82.
The purpose of “Vitamin” experiment is to study the efficiency of protective substances on three biological acellular systems aqueous solutions exposed to cosmic radiation in space. The first system “LDL”is a low density lipoprotein. The second is “E2-TeBG complexe” in which estradiol (E2) is bound to its plasmatic carrier protein, testosterone-estradiol binding globulin (TeBG). The third is “pBR 322”, a plasmid. “Vitamin” experiment was accomodated in the Biopan which had been mounted on the outer surface of a Foton retrievable satellite. The experiment was exposed to space environment during 15 days. A stable temperature of about 20 °C was maintained throughout the flight. “Vitamin” experiment preliminary results are presented and discussed.  相似文献   
83.
Exposure of astronauts to microgravity leads to the loss of calcium from weightbearing bones. Prolonged exposure, e.g., during a journey to Mars, may present problems on return to Earth, with increased risk of fractures and premature osteoporosis in later life. The precise mechanisms of calcium loss have yet to be determined although a key feature is the absence of mechanical loading. Countermeasures aimed at reducing calcium loss to acceptable levels include the use of exercise, drugs, dietary modifications and inertia suits such as the Soviet "Penguin" suit. Missions of a number of years may, however, require the development of artificial gravity on a spacecraft. The country that first solves the physiological problems of man in space and, in particular, skeletal calcium loss, will almost certainly be the first to be able to put a man on Mars.  相似文献   
84.
R. Eric Dyke  Glenn A. Hrinda   《Acta Astronautica》2007,61(11-12):1029-1042
A major goal of NASA's In-Space Propulsion Program is to shorten trip times for scientific planetary missions. To meet this challenge arrival speeds will increase, requiring significant braking for orbit insertion, and thus increased deceleration propellant mass that may exceed launch lift capabilities. A technology called aerocapture has been developed to expand the mission potential of exploratory probes destined for planets with suitable atmospheres. Aerocapture inserts a probe into planetary orbit via a single pass through the atmosphere using the probe's aeroshell drag to reduce velocity. The benefit of an aerocapture maneuver is a large reduction in propellant mass that may result in smaller, less costly missions and reduced mission cruise times. The methodology used to design rigid aerocapture aeroshells will be presented with an emphasis on a new systems tool under development. Current methods for fast, efficient evaluations of structural systems for exploratory vehicles to planets and moons within our solar system have been under development within NASA having limited success. Many systems tools that have been attempted applied structural mass estimation techniques based on historical data and curve fitting techniques that are difficult and cumbersome to apply to new vehicle concepts and missions. The resulting vehicle aeroshell mass may be incorrectly estimated or have high margins included to account for uncertainty. This new tool will reduce the guesswork previously found in conceptual aeroshell mass estimations.  相似文献   
85.
The present paper reports a kinetic analysis of changes of some physiological parameters, obtained from international literature, after changes in gravitational environment. The overall phenomenology of the adaptation to weightlessness is characterized by a rapid process followed by a slow one. The two processes show half time values differing by about five times. Also in the case of readaptation to gravity, after recovery on the Earth, two well resolved processes, showing different half time values, are observed. It is of interest to notice that the rate of response to weightlessness is lower than that to gravity. Of course, the half time values observed depend on the different physiological parameters considered. In any case, the experimental data suggest a general trend of many adaptive changes, that may all be described by a simple mathematical model.  相似文献   
86.
Prediction that the various stresses of flight, particularly weightlessness, would bring about significant derangements in the metabolism of the musculoskeletal system has been based on various observations of long-term immobilized or inactive bed rest. The only attempt at controlled measurement of metabolic changes in space prior to Skylab, a study during the 14-day Gemini VII flight, revealed rather modest losses of important elements. The three astronauts of Skylab II consumed a planned day-by-day, quite constant, dietary intake of major metabolic elements in mixed foods and beverages and provided virtually complete collections of excreta for 31 days preflight, during the 28 days inflight, and for 17 days postflight. Analyses showed that, in varying degree among the crewmen, urinary calcium increased gradually during flight in a pattern similar to that observed in bed-rest studies: the mean plateau peak of urinary calcium excretion in the latter part of flight was double preflight levels. Fecal calcium excretion did not change significantly, but calcium balance, owing to the urinary calcium rise, became either negative or less positive than in preflight measurement. Increased excretion and negative balance of nitrogen and phosphorus indicated appreciable loss of muscle tissue in all three crewmen. Significant losses also occurred inflight in potassium, sodium, and magnesium. Based on the similarity in pattern and degree between these observations and those in bed rest of the losses in calcium, phosphorus, and nitrogen, musculoskeletal integrity would not be threatened in space flights of up to at least 3 months. However, if similar changes occur, indicative of continuing losses of these elements, in the planned Skylab flights for considerably more than 28 days, concern for capable musculoskeletal function should be serious for flights of very many months' duration, and greater research attention will need to be given to development of protective counter-measures.  相似文献   
87.
Smirnova  N. V.  Lyakhov  A. N.  Setzer  Yu. I.  Osepian  A. P.  Meng  C.-I.  Smith  R.  Stenbaek-Nielsen  H. C. 《Cosmic Research》2004,42(3):210-218
Spatial distributions of the electron density in the latitude range 60°–90° N were calculated on the basis of a physical model of the E and lower Fregions of the high-latitude ionosphere using statistical models of auroral proton and electron precipitation. It is shown that precipitating protons can play the key role in the ionization of the Eregion in the dusk and midnight sectors of the auroral oval. However, quantitative estimates of the contribution of protons to the ionization depend on the used statistical models of electron precipitation. Comparison of the electron density profiles calculated for two incoherent scatter radars, EISCAT (Tromsö) and ESR (Svalbard), for simultaneous precipitation of electrons and protons and for electron precipitation only show that the influence of protons is the most significant in the dusk sector over the EISCAT radar and in the midnight sector over the ESR radar. The results presented indicate the need to take protons into account when radar data are used to derive precipitating electron spectra.  相似文献   
88.
Eiges  P. E.  Zastenker  G. N.  Safrankova  J.  Nemecek  Z.  Eismont  N. A. 《Cosmic Research》2001,39(5):432-438
Based on simultaneous measurements of ion fluxes made onboard the closely separated satellites Interball-1and Magion-4, the propagation velocity of middle-scale plasma structures in the Earth's foreshock relative to the solar wind flow is estimated. The derived value of this velocity allows these structures to be identified as a fast magnetosonic wave propagating upstream of the solar wind inflowing the Earth's bow shock. An evaluation is also made of the correlation length of these disturbances in the plane perpendicular to the Sun–Earth line. This length is approximately equal to 2R E.  相似文献   
89.
The National Space Research Institute (INPE) is developing the first Brazilian Scientific Microsatellite (SACI-1) based on the vanguard technology and on the experience acquired through projects developed by Brazilian Space Program. The SACI-1 is a 750km polar orbit satellite. The spacecraft will combine spin stabilization with geomagnetic control and has a total mass of 60 kg. The overall dimensions are 640×470×470 mm. The SACI-1 satellite shall be launched together with CBERS (China-Brazil Earth Resource Satellite). Its platform is being designed for multiple mission applications. The Brazilian Academy of Sciences has selected four scientific payloads that characterize the mission. The scientific experiments are: ORCAS (Solar and Anomalous Cosmic Rays Observation in the Magnetosphere), PLASMEX (Study of Plasma Bubbles), FOTSAT (Airglow Photometer), and MAGNEX (Geomagnetic Experiment).  相似文献   
90.
When discussing problems related to medical service in space flight, particular attention should be given to the specific living conditions and changes associated with space flight. In disease and injury, surgery can be provided only after conservative therapy has failed. In this context gnotobiological chambers allowing surgery in aseptic conditions seem promising. A portable set of interchangeable surgical tools should be made of light-weight alloys that can be readily sterilized. Electroanalgesia in combination with auriculoacupuncture as well as peridureal anesthesia may be used as they allow normal operations in autonomous space flight conditions. Changes in the sympatho-adrenal and kallikrein-kinin systems, as well as water-electrolyte balance, should be taken into account in developing methods and means of medical service in critical situations. Special attention should be given to the prevention and treatment of brain edema in view of weightlessness-induced cephalad fluid shifts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号